Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2105, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453897

RESUMO

Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.


Assuntos
Ecossistema , Prochlorococcus , Oceanos e Mares , Cadeia Alimentar , Dinâmica Populacional , Água do Mar/microbiologia , Oceano Pacífico
2.
Environ Microbiol ; 26(1): e16556, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081167

RESUMO

Marine protists and their metabolic activities are intricately tied to the cycling of nutrients and the flow of energy through microbial food webs. Physiochemical changes in the environment, such as those that result from mesoscale eddies, may impact protistan communities, but the effects that such changes have on protists are poorly known. A metatranscriptomic study was conducted to investigate how eddies affected protists at adjacent cyclonic and anticyclonic eddy sites in the oligotrophic ocean at four depths from 25 to 250 m. Eddy polarity impacted protists at all depths sampled, although the effects of eddy polarity were secondary to the impact of depth across the depth range. Eddy-induced vertical shifts in the water column yielded differences in the cyclonic and anticyclonic eddy protistan communities, and these differences were the most pronounced at and just below the deep chlorophyll maximum. An analysis of transcripts associated with protistan nutritional physiology at 150 m revealed that cyclonic eddies may support a more heterotrophic community, while anticyclonic eddies promote a more phototrophic community. The results of this study indicate that eddies alter the metabolism of protists particularly in the lower euphotic zone and may therefore impact carbon export from the euphotic zone.


Assuntos
Tempestades Ciclônicas , Água do Mar , Água do Mar/química , Água , Cadeia Alimentar , Carbono
3.
Front Microbiol ; 14: 1287326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094622

RESUMO

Algal blooms on the Southern California coast are typically dominated by diatom and dinoflagellate taxa, and are governed by their physiological responses to environmental cues; however, we lack a predictive understanding of the environmental controls underlying the establishment and persistence of these distinct bloom events. In this study, we examined gene expression among the numerically dominant diatom and dinoflagellate taxa during spring upwelling bloom events to compare the physiological underpinnings of diatom vs. dinoflagellate bloom dynamics. Diatoms, which bloomed following upwelling events, expressed genes related to dissolved inorganic nitrogen utilization, and genes related to the catabolism of chitin that may have prolonged their bloom duration following nitrogen depletion. Conversely, dinoflagellates bloomed under depleted inorganic nitrogen conditions, exhibited less variation in transcriptional activity, and expressed few genes associated with dissolved inorganic nutrients during their bloom. Dinoflagellate profiles exhibited evidence of proteolysis and heterotrophy that may have enabled them to bloom to high abundances under depleted inorganic nutrients. Taken together, diatom and dinoflagellate transcriptional profiles illustrated guild-specific physiologies that are tuned to respond to and thrive under distinct environmental "windows of opportunity."

4.
Harmful Algae ; 126: 102435, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290883

RESUMO

Pseudo-nitzschia species with the ability to produce the neurotoxin domoic acid (DA) are the main cause of harmful algal blooms (HABs) along the U.S. West Coast, with major impacts on ecosystems, fisheries, and human health. While most Pseudo-nitzschia (PN) HAB studies to date have focused on their characteristics at specific sites, few cross-regional comparisons exist, and mechanistic understanding of large-scale HAB drivers remains incomplete. To close these gaps, we compiled a nearly 20-year time series of in situ particulate DA and environmental observations to characterize similarities and differences in PN HAB drivers along the California coast. We focus on three DA hotspots with the greatest data density: Monterey Bay, the Santa Barbara Channel, and the San Pedro Channel. Coastwise, DA outbreaks are strongly correlated with upwelling, chlorophyll-a, and silicic acid limitation relative to other nutrients. Clear differences also exist across the three regions, with contrasting responses to climate regimes across a north to south gradient. In Monterey Bay, PN HAB frequency and intensity increase under relatively nutrient-poor conditions during anomalously low upwelling intensities. In contrast, in the Santa Barbara and San Pedro Channels, PN HABs are favored under cold, nitrogen-rich conditions during more intense upwelling. These emerging patterns provide insights on ecological drivers of PN HABs that are consistent across regions and support the development of predictive capabilities for DA outbreaks along the California coast and beyond.


Assuntos
Diatomáceas , Proliferação Nociva de Algas , Humanos , Ecossistema , California , Ácido Caínico
5.
J Eukaryot Microbiol ; 70(4): e12972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36847544

RESUMO

Protist plankton are major members of open-water marine food webs. Traditionally divided between phototrophic phytoplankton and phagotrophic zooplankton, recent research shows many actually combine phototrophy and phagotrophy in the one cell; these protists are the "mixoplankton." Under the mixoplankton paradigm, "phytoplankton" are incapable of phagotrophy (diatoms being exemplars), while "zooplankton" are incapable of phototrophy. This revision restructures marine food webs, from regional to global levels. Here, we present the first comprehensive database of marine mixoplankton, bringing together extant knowledge of the identity, allometry, physiology, and trophic interactivity of these organisms. This mixoplankton database (MDB) will aid researchers that confront difficulties in characterizing life traits of protist plankton, and it will benefit modelers needing to better appreciate ecology of these organisms with their complex functional and allometric predator-prey interactions. The MDB also identifies knowledge gaps, including the need to better understand, for different mixoplankton functional types, sources of nutrition (use of nitrate, prey types, and nutritional states), and to obtain vital rates (e.g. growth, photosynthesis, ingestion, factors affecting photo' vs. phago' -trophy). It is now possible to revisit and re-classify protistan "phytoplankton" and "zooplankton" in extant databases of plankton life forms so as to clarify their roles in marine ecosystems.


Assuntos
Ecossistema , Plâncton , Animais , Plâncton/fisiologia , Eucariotos/fisiologia , Fitoplâncton , Zooplâncton/fisiologia , Cadeia Alimentar , Oceanos e Mares
6.
Integr Environ Assess Manag ; 19(3): 586-604, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35748667

RESUMO

Many coastal states throughout the USA have observed negative effects in marine and estuarine environments caused by cyanotoxins produced in inland waterbodies that were transported downstream or produced in the estuaries. Estuaries and other downstream receiving waters now face the dual risk of impacts from harmful algal blooms (HABs) that occur in the coastal ocean as well as those originating in inland watersheds. Despite this risk, most HAB monitoring efforts do not account for hydrological connections in their monitoring strategies and designs. Monitoring efforts in California have revealed the persistent detection of cyanotoxins across the freshwater-to-marine continuum. These studies underscore the importance of inland waters as conduits for the transfer of cyanotoxins to the marine environment and highlight the importance of approaches that can monitor across hydrologically connected waterbodies. A HAB monitoring strategy is presented for the freshwater-to-marine continuum to inform HAB management and mitigation efforts and address the physical and hydrologic challenges encountered when monitoring in these systems. Three main recommendations are presented based on published studies, new datasets, and existing monitoring programs. First, HAB monitoring would benefit from coordinated and cohesive efforts across hydrologically interconnected waterbodies and across organizational and political boundaries and jurisdictions. Second, a combination of sampling modalities would provide the most effective monitoring for HAB toxin dynamics and transport across hydrologically connected waterbodies, from headwater sources to downstream receiving waterbodies. Third, routine monitoring is needed for toxin mixtures at the land-sea interface including algal toxins of marine origins as well as cyanotoxins that are sourced from inland freshwater or produced in estuaries. Case studies from California are presented to illustrate the implementation of these recommendations, but these recommendations can also be applied to inland states or regions where the downstream receiving waterbody is a freshwater lake, reservoir, or river. Integr Environ Assess Manag 2023;19:586-604. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Proliferação Nociva de Algas , Lagos , Estuários , Toxinas de Cianobactérias , Rios
7.
Protist ; 174(1): 125927, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565615

RESUMO

Bioassays using cultures of the toxic haptophyte Prymnesium parvum and the ciliate Cyclidium sp. as prey were conducted to test the effect of pH (range = 6.5 - 8.5), salinity (range = 1.50 - 7.50‰), and a combination of pH and salinity on the toxicity of P. parvum. pH had a significant effect on P. parvum toxicity. Toxicity was rapidly (within 24 hr) induced by increasing pH of the medium, or reduced by lowering pH. Conversely, lowering salinity reduced toxicity, albeit less effectively compared to pH, and P. parvum cells remained toxic at the lowest values tested (1.50‰ at pH 7.5). An additional effect between pH and salinity was also observed: low salinity combined with low pH led to not only decreased toxicity, but also resulted in lower P. parvum growth rates. Such effects of pH and salinity on P. parvum growth and toxicity provide insight into the environmental factors supporting community dominance and toxic blooms of the alga.


Assuntos
Chrysophyta , Haptófitas , Salinidade , Concentração de Íons de Hidrogênio
8.
Harmful Algae ; 118: 102314, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195429

RESUMO

Certain species within the genus Pseudo-nitzschia are able to produce the neurotoxin domoic acid (DA), which can cause illness in humans, mass-mortality of marine animals, and closure of commercial and recreational shellfisheries during toxic events. Understanding and forecasting blooms of these harmful species is a primary management goal. However, accurately predicting the onset and severity of bloom events remains difficult, in part because the underlying drivers of bloom formation have not been fully resolved. Furthermore, Pseudo-nitzschia species often co-occur, and recent work suggests that the genetic composition of a Pseudo-nitzschia bloom may be a better predictor of toxicity than prevailing environmental conditions. We developed a novel next-generation sequencing assay using restriction site-associated DNA (2b-RAD) genotyping and applied it to mock Pseudo-nitzschia communities generated by mixing cultures of different species in known abundances. On average, 94% of the variance in observed species abundance was explained by the expected abundance. In addition, the false positive rate was low (0.45% on average) and unrelated to read depth, and false negatives were never observed. Application of this method to environmental DNA samples collected during natural Pseudo-nitzschia spp. bloom events in Southern California revealed that increases in DA were associated with increases in the relative abundance of P. australis. Although the absolute correlation across time-points was weak, an independent species fingerprinting assay (Automated Ribosomal Intergenic Spacer Analysis) supported this and identified other potentially toxic species. Finally, we assessed population-level genomic variation by mining SNPs from the environmental 2bRAD dataset. Consistent shifts in allele frequencies in P. pungens and P. subpacifica were detected between high and low DA years, suggesting that different intraspecific variants may be associated with prevailing environmental conditions or the presence of DA. Taken together, this method presents a potentially cost-effective and high-throughput approach for studies aiming to evaluate both population and species dynamics in mixed samples.


Assuntos
DNA Ambiental , Diatomáceas , Animais , Diatomáceas/genética , Humanos , Neurotoxinas
9.
Environ Microbiol ; 24(12): 6033-6051, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35880671

RESUMO

Protistan algae (phytoplankton) dominate coastal upwelling ecosystems where they form massive blooms that support the world's most important fisheries and constitute an important sink for atmospheric CO2 . Bloom initiation is well understood, but the biotic and abiotic forces that shape short-term dynamics in community composition are still poorly characterized. Here, high-frequency (daily) changes in relative abundance dynamics of the metabolically active protistan community were followed via expressed 18S V4 rRNA genes (RNA) throughout two algal blooms during the spring of 2018 and 2019 in Santa Monica Bay (central Southern California Bight). A diatom bloom formed after wind-driven, nutrient upwelling events in both years, but different taxa dominated each year. Whereas diatoms bloomed following elevated nutrients and declined after depletion each year, a massive dinoflagellate bloom manifested under relatively low inorganic nitrogen conditions following diatom bloom senescence in 2019 but not 2018. Network analysis revealed associations between diatoms and cercozoan putative parasitic taxa and syndinean parasites during 2019 that may have influenced the demise of the diatoms, and the transition to a dinoflagellate-dominated bloom.


Assuntos
Diatomáceas , Dinoflagelados , Ecossistema , Baías , Eutrofização , Fitoplâncton , Diatomáceas/genética , Dinoflagelados/genética
10.
ISME Commun ; 2(1): 23, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37938660

RESUMO

Ecological network analyses are used to identify potential biotic interactions between microorganisms from species abundance data. These analyses are often carried out using time-series data; however, time-series networks have unique statistical challenges. Time-dependent species abundance data can lead to species co-occurrence patterns that are not a result of direct, biotic associations and may therefore result in inaccurate network predictions. Here, we describe a generalize additive model (GAM)-based data transformation that removes time-series signals from species abundance data prior to running network analyses. Validation of the transformation was carried out by generating mock, time-series datasets, with an underlying covariance structure, running network analyses on these datasets with and without our GAM transformation, and comparing the network outputs to the known covariance structure of the simulated data. The results revealed that seasonal abundance patterns substantially decreased the accuracy of the inferred networks. In addition, the GAM transformation increased the predictive power (F1 score) of inferred ecological networks on average and improved the ability of network inference methods to capture important features of network structure. This study underscores the importance of considering temporal features when carrying out network analyses and describes a simple, effective tool that can be used to improve results.

11.
Harmful Algae ; 108: 102103, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34588124

RESUMO

Blooms of the diatom genus Pseudo-nitzschia occur annually in the Southern California Bight (SCB), and domoic acid (DA) associated with these events can contaminate fisheries, presenting both human and wildlife health risks. Recent studies have suggested that marine sediments may act as a reservoir for DA, extending the risk of food web contamination long after water column blooms have ended. In this study, we conducted a regional assessment of the extent and magnitude of DA in the benthic environment, and monthly observations of sediments and benthic infauna at multiple stations over a 16-month period. DA was widespread in continental shelf sediments of the SCB. The toxin was detected in 54% of all shelf habitats sampled. Detectable concentrations ranged from 0.11 ng/g to 1.36 ng/g. DA was consistently detected in benthic infauna tissues over the monthly timeseries, while the DA concentrations in sediments during the same period were commonly below detection or at low concentrations. The presence of DA in the benthic environment did not always have an apparent water column source, raising the possibility of lateral transport, retention/preservation in sediments or undetected blooms in subsurface waters. In most cases, DA was detected in tissues but not in the co-located surface sediments. Coarse taxonomic sorting of the infauna revealed that the accumulation of DA varied among taxa. We observed that DA was widespread among lower trophic level organisms in this study, potentially acting as a persistent source of DA to higher trophic levels in the benthos.


Assuntos
Diatomáceas , Ácido Caínico , Cadeia Alimentar , Sedimentos Geológicos , Ácido Caínico/análogos & derivados
12.
Harmful Algae ; 103: 102003, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980443

RESUMO

The contamination of coastal ecosystems from a variety of toxins of marine algal origin is a common and well-documented situation along the coasts of the United States and globally. The occurrence of toxins originating from cyanobacteria along marine coastlines is much less studied, and little information exists on whether toxins from marine and freshwater sources co-occur regularly. The current study focused on the discharge of cyanotoxins from a coastal lagoon (Santa Clara River Estuary) as a consequence of an extreme tide event (King Tides; December 3-5, 2017) resulting in a breach of the berm separating the lagoon from the ocean. Monthly monitoring in the lagoon throughout 2017 documented more than a dozen co-occurring cyanobacterial genera, as well as multiple algal and cyanobacterial toxins. Biotoxin monitoring before and following the King Tide event using Solid Phase Adsorption Toxin Tracking (SPATT) in the lagoon and along the coast revealed the co-occurrence of microcystins, anatoxin, domoic acid, and other toxins on multiple dates and locations. Domoic acid was ubiquitously present in SPATT deployed in the lagoon and along the coast. Microcystins were also commonly detected in both locations, although the beach berm retained the lagoonal water for much of the year. Mussels collected along the coast contained microcystins in approximately half the samples, particularly following the King Tide event. Anatoxin was observed in SPATT only in late December, following the breach of the berm. Our findings indicate both episodic and persistent occurrence of both cyanotoxins and marine toxins may commonly contaminate coastlines in proximity to cyanobacteria-laden creeks and lagoons.


Assuntos
Cianobactérias , Ecossistema , California , Monitoramento Ambiental , Rios
13.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547239

RESUMO

The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.


Assuntos
Ritmo Circadiano/genética , Células Eucarióticas/efeitos da radiação , Luz , Oceanos e Mares , Plâncton/crescimento & desenvolvimento , Plâncton/efeitos da radiação , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/efeitos da radiação , Chlamydomonas/genética , Chlamydomonas/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Células Eucarióticas/metabolismo , Células Fotorreceptoras/metabolismo , Filogenia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Toxicon ; 192: 1-14, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33428970

RESUMO

The global proliferation of toxin producing cyanobacterial blooms has been attributed to a wide variety of environmental factors with nutrient pollution, increased temperatures, and drought being three of the most significant. The current study is the first formal assessment of cyanotoxins in two impaired lakes, Canyon Lake and Lake Elsinore, in southern California that have a history of cyanobacterial blooms producing high biomass as measured by chl-a. Cyanotoxins in Lake Elsinore were detected at concentrations that persistently exceeded California recreational health thresholds, whereas Canyon Lake experienced persistent concentrations that only occasionally exceeded health thresholds. The study results are the highest recorded concentrations of microcystins, anatoxin-a, and cylindrospermopsin detected in southern California lakes. Concentrations exceeded health thresholds that caused both lakes to be closed for recreational activities. Cyanobacterial identifications indicated a high risk for the presence of potentially toxic genera and agreed with the cyanotoxin results that indicated frequent detection of multiple cyanotoxins simultaneously. A statistically significant correlation was observed between chlorophyll-a (chl-a) and microcystin concentrations for Lake Elsinore but not Canyon Lake, and chl-a was not a good indicator of cylindrospermopsin, anatoxin-a, or nodularin. Therefore, chl-a was not a viable screening indicator of cyanotoxin risk in these lakes. The study results indicate potential acute and chronic risk of exposure to cyanotoxins in these lakes and supports the need for future monitoring efforts to help minimize human and domestic pet exposure and to better understand potential effects to wildlife. The frequent co-occurrence of complex cyanotoxin mixtures further complicates the risk assessment process for these lakes given uncertainty in the toxicology of mixtures.


Assuntos
Cianobactérias , Toxinas Bacterianas/análise , California , Monitoramento Ambiental , Lagos , Microcistinas/análise , Microcistinas/toxicidade
15.
Toxicon ; 171: 62-65, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31614156

RESUMO

Algal toxins (domoic acid, saxitoxin, okadaic acid) were monitored at seven locations off southern California using Solid Phase Adsorption Toxin Tracking. At least two types of toxins were found at all locations, with co-occurrence of two and three toxins in 12% and 10% of samples, respectively. This study expands our limited understanding of the simultaneous presence of multiple algal toxins along the coast and raises questions regarding the potential health ramifications of such co-occurrences.


Assuntos
Ácido Caínico/análogos & derivados , Ácido Okadáico/análise , Saxitoxina/análise , Adsorção , California , Monitoramento Ambiental , Proliferação Nociva de Algas , Ácido Caínico/análise , Toxinas Marinhas/análise , Água do Mar/química
16.
Proc Natl Acad Sci U S A ; 116(24): 11824-11832, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31127042

RESUMO

Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.


Assuntos
Organismos Aquáticos/metabolismo , Organismos Aquáticos/microbiologia , Bactérias/crescimento & desenvolvimento , Material Particulado/metabolismo , Água do Mar/microbiologia , Animais , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono/fisiologia , Eucariotos/metabolismo , Oceanos e Mares
17.
J Eukaryot Microbiol ; 66(4): 637-653, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30620427

RESUMO

Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep-sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high-throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full-length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.


Assuntos
Alveolados/isolamento & purificação , Cercozoários/isolamento & purificação , Fontes Hidrotermais/microbiologia , Microbiota , Água do Mar/microbiologia , Alveolados/genética , Beggiatoa/fisiologia , Cercozoários/genética , México , RNA de Protozoário/análise , RNA Ribossômico 18S/análise
18.
Trends Microbiol ; 27(3): 197-205, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30455081

RESUMO

Documenting the immense diversity of single-celled, eukaryotic organisms (protists) has been a formidable challenge for ecologists. These species were originally defined by morphological criteria, but shortcomings of the morphospecies concept, and a bewildering array of sizes and cellular attributes, has made constructing a taxonomy that is useful for ecologists nearly impossible. Consequently, physiological and genetic information has been integrated to address these shortcomings, and to develop the framework of a unifying taxonomy. DNA sequence information, in particular, has revolutionized studies of protistan diversity. However, the exponential increase in sequence-based protistan species richness published from field surveys in recent years raises the question of whether we have moved beyond characterizing species-level diversity and begun to reveal intraspecies diversity. The answer to that question appears to be 'yes', at least for some protistan lineages. The need to document such microdiversity may be justified, but it is important for protistologists to recognize and acknowledge that possibility, and its consequences.


Assuntos
Biodiversidade , Ecossistema , Eucariotos/classificação , Eucariotos/fisiologia , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
19.
Harmful Algae ; 79: 87-104, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420020

RESUMO

Blooms of the marine diatom genus Pseudo-nitzschia that produce the neurotoxin domoic acid have been documented with regularity along the coast of southern California since 2003, with the occurrence of the toxin in shellfish tissue predating information on domoic acid in the particulate fraction in this region. Domoic acid concentrations in the phytoplankton inhabiting waters off southern California during 2003, 2006, 2007, 2011 and 2017 were comparable to some of the highest values that have been recorded in the literature. Blooms of Pseudo-nitzschia have exhibited strong seasonality, with toxin appearing predominantly in the spring. Year-to-year variability of particulate toxin has been considerable, and observations during 2003, 2006, 2007, 2011 and again in 2017 linked domoic acid in the diets of marine mammals and seabirds to mass mortality events among these animals. This work reviews information collected during the past 15 years documenting the phenology and magnitude of Pseudo-nitzschia abundances and domoic acid within the Southern California Bight. The general oceanographic factors leading to blooms of Pseudo-nitzschia and outbreaks of domoic acid in this region are clear, but subtle factors controlling spatial and interannual variability in bloom magnitude and toxin production remain elusive.


Assuntos
Diatomáceas/metabolismo , Proliferação Nociva de Algas , Ácido Caínico/análogos & derivados , California , Ácido Caínico/metabolismo , Fitoplâncton , Estações do Ano , Água do Mar , Frutos do Mar
20.
Harmful Algae ; 78: 129-141, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196920

RESUMO

Monterey Bay, California experiences near-annual blooms of Pseudo-nitzschia that can affect marine animal health and the economy, including impacts to tourism and commercial/recreational fisheries. One species in particular, P. australis, has been implicated in the most toxic of events, however other species within the genus can contribute to widespread variability in community structure and associated toxicity across years. Current monitoring methods are limited in their spatial coverage as well as their ability to capture the full suite of species present, thereby hindering understanding of HAB events and limiting predictive accuracy. An integrated deployment of multiple in situ platforms, some with autonomous adaptive sampling capabilities, occurred during two divergent bloom years in the bay, and uncovered detailed aspects of population and toxicity dynamics. A bloom in 2013 was characterized by spatial differences in Pseudo-nitzschia populations, with the low-toxin producer P. fraudulenta dominating the inshore community and toxic P. australis dominating the offshore community. An exceptionally toxic bloom in 2015 developed as a diverse Pseudo-nitzschia community abruptly transitioned into a bloom of highly toxic P. australis within the time frame of a week. Increases in cell density and proliferation coincided with strong upwelling of nutrients. High toxicity was driven by silicate limitation of the dense bloom. This temporal shift in species composition mirrored the shift observed further north in the California Current System off Oregon and Washington. The broad scope of sampling and unique platform capabilities employed during these studies revealed important patterns in bloom formation and persistence for Pseudo-nitzschia. Results underscore the benefit of expanded biological observing capabilities and targeted sampling methods to capture more comprehensive spatial and temporal scales for studying and predicting future events.


Assuntos
Biodiversidade , Diatomáceas/fisiologia , Monitoramento Ambiental , Eutrofização , California , Toxinas Marinhas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...